

958454-intelWATT D8.10 – Deep Learning system implementation 1/16

 “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 958454”.

D8.10 – Deep Learning system implementation

Project Information

Grant Agreement Number 958454

Project Full Title
Intelligent Water Treatment for water preservation combined with
simultaneous energy production and material recovery in energy intensive
industries

Project Acronym intelWATT

Funding scheme IA

Start date of the project 1
st

October 2020

Duration 42 months

Project Coordinator Andreas Sapalidis (NCSR)

Project Website https://www.intelwatt.eu

Deliverable Information

Deliverable n° 8.10

Deliverable title Deep Learning system implementation

WP no. 8

WP Leader Techedge

Contributing Partners

Nature Other

Authors Javier Alejandro Vicente Napolitano, Ciro Navarro Aceto, Manuel Torres Brabo

Contributors

Reviewers Andreas Sapalidis

Contractual Deadline M20

Delivery date to EC 31/05/2022

Dissemination Level

PU Public

PP Restricted to other programme participants (incl. Commission Services)

RE Restricted to a group specified by the consortium (incl. Commission Services)

CO Confidential, only for the members of the consortium (incl. Commission Services)

Ref. Ares(2022)3992411 - 30/05/2022

958454-intelWATT D8.10 – Deep Learning system implementation 2/16

 “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 958454”.

Document Log

Version Date Author Description of Change

V1.0 02/05/2022 Javier Alejandro Vicente Napolitano First release

V1.3 13/05/2022 Javier Alejandro Vicente Napolitano First draft

V2.0 20/05/2022 Ciro Navarro Aceto Final draft

V2.1 24/05/2022 Manuel Torres Brabo Review of the final draft

V3.0 25/05/2022 Manuel Torres Brabo Final document

V3.1 27/05/2022 Andreas Sapalidis Final Review

958454-intelWATT D8.10 – Deep Learning system implementation 3/16

 “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 958454”.

Table of Contents

1 Executive Summary.. 5

2 Overall Architecture ... 6

3 On premises inference implementation ... 8

3.1 Agent Containerization Architecture 9

3.2 Software requirements 10

3.3 Hardware requirements 10

4 Cloud Inference implementation...11

4.1 General Architecture 11

4.2 Cloud environment definition 11

4.3 Cloud computing instance 12

4.4 Deep Reinforcement Learning agent 13

4.5 Endpoint 13

5 Cloud Continuous training implementation ...15

6 References ..16

958454-intelWATT D8.10 – Deep Learning system implementation 4/16

 “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 958454”.

List of figures
Figure 1. Deep Learning System Implementation Architecture ... 7
Figure 2. Hardware and Software components of Docker containerized agents. .. 8
Figure 3. 2-containers Agent Implementation. ... 9
Figure 4. Necessary libraries to be installed in every container. .. 9
Figure 5. Cloud inference architecture diagram. ..11
Figure 6. Example of environment definition on Azure platform. ..12
Figure 7. Computing instance example on Azure. ..12
Figure 8. Model list on Azure cloud ...13
Figure 9. Example Azure Endpoint ...14
Figure 10. Continuous training implementation in Azure. ..15

958454-intelWATT D8.10 – Deep Learning system implementation 5/16

 “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 958454”.

1 Executive Summary

In the overall systems architecture of intelWATT the Deep Learning system is responsible for the control
and optimization of membrane processes, providing a guideline for the set point of control variables for the
processes involved.

The Deep Learning system is based on the principles of Deep Reinforcement Learning (DRL) and is
composed of agents interacting with the environment and adjusting their actions towards the objectives
based on the outcomes of previous actions.

The DL system has two different modes of operation: training and inference. The training system uses real
pilot data to update the agent’s parameters. The inference system can run on the cloud, but in some cases,
trained agents must be deployed next to the case study’s environment to suggest control actions on the
processes with minimum delay.

During training, the main needs of the system are accurate and abundant data for the updates and
computing power to speed up the training through hundreds of thousands of iterations. This subsystem is
deployed in the cloud and uses scalable and elastic resources to supply that computing power.

For inference, the system must be available as close to the real environments as possible and the main
requisites are ease of deployment and portability. The inference system is containerized so that it can be
deployed in the cloud or on site if needed and will run on different hardware configurations. For the on-
premises deployments data will be read from the sensors (via the on-premises data concentrators) and
control actions sent directly to the PLCs.

958454-intelWATT D8.10 – Deep Learning system implementation 6/16

 “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 958454”.

2 Overall Architecture

The Deep Learning (DL) system is composed of two different processes: inference and continuous training.
Until the pilots are finished and ready to run, the first agent, trained with simulators and laboratory data,
will be deployed for each of the membrane process within the different case studies. The agents are
responsible for the inference process, meaning the output of these agents will optimize the reward
function and therefore the process itself. As the simulator’s precision is limited, the first version of the
agents only has a partial understanding of the environment. The continuous training is necessary to gain a
deeper understanding of the process and achieve better results, regarding the defined reward function.

There are several possible components and structures that can be used to define the overall architecture of
both the inference and the continuous training processes. Taking into consideration this fact, the desired
characteristics of the implementation must be listed:

- Automated: the system must work autonomously, with no human intervention required. The
inferences will be suggested/applied to the process after a fixed amount of time (depending on
process requirements). The continuous training is performed after N inference steps through
batches of data. The old agent version is stored and the new one deployed into production.

- Available: the system must ensure the availability of inferences during the pilot’s operating time.
Delays on the deployment of new agents are acceptable.

- Easy to maintain: if any problem comes up, it should not require a substantial effort to solve it and
start operating again.

- Adaptable: due to the variety of possible solutions, the possibility to upgrade/improve the system
cannot be discarded. The needs of the process will drive the development of the system.

The requirement of being adaptable is essential to the whole DL system. Several different technologies will
be tested during the project and the best ones will be adopted. The current proposed solution is the basis
for further tests and development that are expected during the evolution of the project. Hence, the final
system can be completely different from the one described in this document. However, the underlying
operation of the system, the inference and continuous training, will be maintained.

To ensure the availability of the DL system, the agent will be deployed both on premises and in the cloud.
This setup allows inferences to be available even if the internet connection is not working. Moreover, if any
process has low latency requirements, the on-premises implementation will be able to fulfil these needs.
The specific requirements for the on-premises implementation will be detailed in the corresponding
section. To reduce the investment on hardware, only the inference process will be carried out on-premises.

The cloud implementation allows the system to scale the inference and continuous training processes as
needed and to store the sequence of trained agents. Figure 1 shows a diagram of the dataflow between
pilot sensors, on-premises inference implementation and cloud inference and training implementations.
Blue arrows correspond to data or inferences, whereas green ones denote a new model

 Sensor data will be sent both to the on-premises system and to the data lake in the cloud. The on-
premises system can directly send inferences to the pilot actuator. On the other hand, the cloud system can
also infer the same output, as the agent deployed in both systems will be exactly the same. After N
inference steps the current agent is updated (continuous training). After the training process is finished, the
new agent is deployed on-premises and stored and deployed in the cloud. The new agent just takes over
when the system is completely updated, meanwhile the old version is operating.

958454-intelWATT D8.10 – Deep Learning system implementation 7/16

 “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 958454”.

Figure 1. Deep Learning System Implementation Architecture

958454-intelWATT D8.10 – Deep Learning system implementation 8/16

 “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 958454”.

3 On premises inference implementation

Currently one of the most widely used ways of deploying applications and Machine Learning or Deep
Learning models is through containers. Docker is one of the available solutions to containerize applications.
To be clear about what a container means, the Docker’s website definition of container is the following:

“A container is a standard unit of software that packages up code and all its dependencies, so the
application runs quickly and reliably from one computing environment to another. A Docker container
image is a lightweight, standalone, executable package of software that includes everything needed to run
an application: code, runtime, system tools, system libraries and settings.

Container images become containers at runtime and in the case of Docker containers – images become
containers when they run on Docker Engine. Available for both Linux and Windows-based applications,
containerized software will always run the same, regardless of the infrastructure. Containers isolate
software from its environment and ensure that it works uniformly despite differences for instance between
development and staging.”

Figure 2. Hardware and Software components of Docker containerized agents.

Due to the several advantages and the ease of deployment of containers, they are the best choice to the
on-premises implementation. All the necessary Docker containers will be provided by Techedge to be
implemented in the pilots.

958454-intelWATT D8.10 – Deep Learning system implementation 9/16

 “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 958454”.

3.1 Agent Containerization Architecture

For each agent represented in Figure 2, there are actually two agents that can be a part of two different
containers or a single one. These two agents, that can work in parallel, are two different versions of the
same agent. The old agent is the last version before the update of the parameters, whereas the new agent
is the updated version. This configuration was chosen for some reasons. If the new agent, by any reason,
has a degraded performance or any problem occur during the update, the old agent can start controlling
the system again. Almost no time is lost during this operation switch. On the other hand, after each update
of the parameters, the new agent must be deployed in the container of the old agent. After this process,
the new agent will be the old agent, and the old agent is now the new agent. This setup allows the update
of the agent while the other agent is currently operating the control of the membrane process.

Long story short, the 2-containers agent implementation allows the update of one agent during the
operation of the control system and the switch back to the old version if anything unexpected occur.

Figure 3. 2-containers Agent Implementation.

Other than the agent, each container has all the necessary libraries and its dependencies installed. As all
agents are trained in Python, the basic programming language is Python. Every Reinforcement Learning
library uses one of the most used Deep Learning libraries, TensorFlow or Pytorch. These libraries are the
primary tool that runs on Python. The whole agent architecture, neural network structure and parameters,
are saved in a specific format that depends on the library used to train it. By now, stable-baselines3 and
RLlib are the ones that are being considered for the training of the agents. As a last step, for the inference
to be performed by the agent, the input data must be manipulated and fed into the correct format to the
agent. Figure 4 shows the necessary libraries in each container to output the control inferences of the
membrane processes.

Figure 4. Necessary libraries to be installed in every container.

958454-intelWATT D8.10 – Deep Learning system implementation 10/16

 “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 958454”.

3.2 Software requirements

Figure 2 shows the necessary components to run a containerized application. The host operating system
corresponds to the only software apart from the docker container that is needed in the system. As docker is
not dependent on the operating system (OS), the selected OS will not be a limitation to the on-premises
implementation. Linux would be the easiest option.

3.3 Hardware requirements

The following requirements were tested to ensure a low run time of the models. Depending on the
requirements of the other software that will share this same hardware, these minimum requirements must
be increased to avoid any slowdown of the system.

CPU: 2 cores, 2.3 GHz

RAM: 16 GB

Memory: up to 5 GB per Docker container.

958454-intelWATT D8.10 – Deep Learning system implementation 11/16

 “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 958454”.

4 Cloud Inference implementation

The cloud inference implementation allows the pilot to receive control recommendations or automatic
actions from the agent in the cloud when internet connection is available. To carry out the implementation
of the agent in Azure Cloud there are some components that must be defined. A computing instance is
necessary to run the agent in the cloud. The OS of the computing instance and the necessary libraries and
dependencies are specified in a cloud environment. The deep reinforcement learning agent must be
previously trained and registered into the model section. Lastly, the endpoint to send the inferences to the
pilot is created in around 10-12 minutes. The whole process is performed within the Azure Machine
Learning Studio.

4.1 General Architecture

The cloud definition of the endpoint is shown in Figure 5. The Environment is defined as a Docker image
and executed in a Virtual Machine (VM) or computing instance. The model is loaded from the Azure Blob
Storage to the model section of Azure Machine Learning Studio. The endpoint is then ready to run. The PLC
carries out the API REST call and the endpoint sends back the recommendation/action for the control
system.

Figure 5. Cloud inference architecture diagram.

4.2 Cloud environment definition

The cloud environment must contain all the necessary libraries and dependencies for the deep
reinforcement learning agent to be executed. For this purpose, a dockerfile is defined. The following figure
shows the definition of a simple environment. The left column shows some details about the environment,
such as the name, version, who created it and the creation date. The definition of the dockerfile is the right
column, where the OS and main libraries are specified.

958454-intelWATT D8.10 – Deep Learning system implementation 12/16

 “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 958454”.

Figure 6. Example of environment definition on Azure platform.

4.3 Cloud computing instance

The previous environment can only be executed if a computing instance or virtual machine (VM) is assigned
to it. Azure cloud provides several choices of computing instances, both CPU and GPU with different sizes
(CPU and GPU cores) and RAM memory. The computing instance can be scaled as needed, increasing its
size, or creating a cluster of computer instances to adapt to the computing power demand.

Figure 7. Computing instance example on Azure.

958454-intelWATT D8.10 – Deep Learning system implementation 13/16

 “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 958454”.

‘intelWATTinference’ VM has the resource properties on the left column. The status, the VM size, process
unit, and estimated cost is some of the information shown for each new computing instance created. Any
computing instance can be started and stopped whenever it is needed or not.

4.4 Deep Reinforcement Learning agent

The DLR agent is the responsible for the control and optimization of the membrane processes. After the
agent training through theoretical python models and the fine tuning of the algorithm hyperparameters
(parameters related to the algorithm, not the actual model), the result is the first version of the neural
network responsible for the control and optimization. This neural network will be continuously trained with
real pilot data, during the development of intelWATT project.

The previously described neural network or the agent, is the one that will be registered into the Azure
Machine Learning Studio as the model. The model is the key part of the endpoint. Environment and
computing resources are just defined to allow the model to be executed.

Figure 8. Model list on Azure cloud

4.5 Endpoint

The endpoint is a remote computing device that communicates back and forth with a network to which it is
connected. It will allow the recommendations to be sent from the cloud to the pilot through internet. The
data sent from the pilot and then stored in the data lake is the input of this endpoint. The output is the
recommended action to be taken in each of the membrane process (e.g., increase/decrease flow rate in a
certain amount).

After the definition of the environment, computing instance and model, the endpoint can now be
deployed. The geographic zone, permissions and access keys are some of the necessary information to the
endpoint to be deployed. This service can scale as demand grows. If more virtual machines (computing
instances) are needed, the endpoint allows them to be created during its operation. The traffic that each of
the computing instances are responsible for is balanced, so that there are no idle instances during the
operation of the endpoint.

958454-intelWATT D8.10 – Deep Learning system implementation 14/16

 “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 958454”.

Figure 6 shows a defined endpoint in Azure platform. Service ID, a brief description about the endpoint, the
provisioning state, and the compute type are displayed when any endpoint is checked out.

Figure 9. Example Azure Endpoint

958454-intelWATT D8.10 – Deep Learning system implementation 15/16

 “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 958454”.

5 Cloud Continuous training implementation

Figure 9 shows the general diagram of the continuous training implementation in Azure Cloud.

Figure 10. Continuous training implementation in Azure.

The training Python scripts, and Docker images will be in Azure Repos, a private Git repository. A Git
repository tracks and saves the history of all changes made to the files in a Git project. The training process
will be performed after N actions taken by the agent, that is to say, after N interactions of the agent with
the real pilot system. An Azure Function will be used to count the number of interactions of the agent. It
will be responsible for triggering the next training phase.

After the triggering of the training phase, Azure Machine Learning Studio sets up a VM to compute the
agent parameter’s update, using both the training Python script and the Docker imagen from Azure Repos.
The data used to perform this updated is stored in a database. The output of the training phase is a new
version of the agent.

Azure Blob storage will store every agent version. On the one hand, storing different agent versions allow
an easy way to compare the performance of agents. Although the comparison between agents is not
straightforward and the best way for doing it is still not defined, data about the agent’s performance will be
stored in a database. On the other hand, in case any update leads to a worsening in the agent’s
performance, or any problem occurs during training, an old version of the agent can be reused.

958454-intelWATT D8.10 – Deep Learning system implementation 16/16

 “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 958454”.

6 References

[1] Docker website, https://www.docker.com/

[2] Azure Cloud, https://azure.microsoft.com/en-us/

