

D8.2– Sensors datasheets and features

Project Information

Grant Agreement Number	958454
Project Full Title	Intelligent Water Treatment for water preservation combined with simultaneous energy production and material recovery in energy intensive industries
Project Acronym	intelWATT
Funding scheme	IA
Start date of the project	1 st October 2020
Duration	42 months
Project Coordinator	Andreas Sapalidis (NCSR)
Project Website	https://www.intelwatt.eu

Deliverable Information

Deliverable n°	D8.2
Deliverable title	Sensors datasheets and features
WP no.	8
WP Leader	TECHEDGE
Contributing Partners	POLITO
Nature	Report
Authors	Sergio Ferrero, Andrea Lamberti (POLITO)
Contributors	-
Reviewers	Andreas Sapalidis (NCSR)
Contractual Deadline	31/03/2022
Delivery date to EC	29/03/2022

Dissemination Level

PU	Public	✓
PP	Restricted to other program participants (incl. Commission Services)	
RE	Restricted to a group specified by the consortium (incl. Commission Services)	
СО	Confidential, only for the members of the consortium (incl. Commission Services)	

Document Log

Version	Date	Author	Description of Change
V1.0	22/03/2022	Sergio Ferrero	First draft
V2.0	25/03/2022	Sergio Ferrero	Final Document
V2.1	28/03/2022	Andreas Sapalidis	Final Review

958454 — intelWATT

D8.2– Sensors datasheets and features

022

Table of Contents

1	Executive Summary	4
2	Introduction	5
3	Sensors features	6

List of Tables

Table 1. Multiparametric probe specifications	6
Table 2. Multiparametric prob Sensors specifications	7
Table 3. Calcium ion sensors specifications	8
Table 4. So4/Calcium ion sensors specifications	9
Table 5. Sulphate/Iron optical sensor specifications	10
Table 6. Density sensor specifications	11
Table 7. Solar irradiance sensor specifications	12
Table 8. Voltage and Current sensors specifications	12
Table 9. Pressure sensors specifications	13
Table 10. Flow sensors specifications	14
Table 11. New special sensors requirements for CS3	15
Table 12. Copper and Nickel sensors specifications	17

intel

List of Figures

Figure 1. EXO 1 multiparametric probe. The probe was purchased to carry out preliminary tests	6
Figure 2. Model S80 sensor for calcium ion detection.	8
Figure 3. Sulphate monitoring apparatus.	9
Figure 4. EZ1000 Series sulphate/ EZ2000 Series Iron analyser	10
Figure 5. DENSITRAK [®] D625 Liquid Density Meter	11
Figure 6. Silicon solar radiation sensor	11
Figure 7. IT 205-S Current transducer and CV 3-500 Voltage transducer	12
Figure 8. 3100 Series pressure sensors	13
Figure 9. Autosen vortex flow meters	14
Figure 10. Chromium sensor, developed by Politecnico di Torino	14
Figure 11. W600 series for Nickel and Copper detection	16
Figure 12. Immersible copper sensors (A) are available for direct monitoring of solutions inside the	tank or
continuous flow through sensors (B) designed for monitoring outside the tank	16

Executive Summary 1

This document refers to the deliverable D8.2 "Sensors datasheets and features". It deals around the investigation of sensors properties, such as communication protocol, power supply, full scale, resolution etc. This report summarizes outputs from task T8.1 "Sensors development" (POLITO, M6-18) while considering data from D2.3 "Report on sensor requirements".

2 Introduction

This document aims to report commercial and custom made sensors features for physical/chemical parameters, which might be detected in control points of lab and pilot units' water streams. The control points and the key parameters were defined and reported in D2.3 "Report on sensor requirements".

intel W

This report relates to the information provided in the previous deliverable D8.1 "Report on sensors".

Any information regarding control points and key parameters can be retrieved from D2.3 and D8.1, and will not be reported here to avoid repetitions.

3 Sensors features

As reported in D8.1 "Report on sensors", for the monitoring of specific physical and chemical parameters, such as temperature, pH, turbidity, electrical conductivity, a multiparametric probe is recommended.

Figure 1. EXO 1 multiparametric probe.

The YSI multiparametric probe model EXO1 specifications are reported in Table1.

Table 1. Multiparametric probe specifications

Name	Power supply	Dimensions	Communication protocols
EXO 1 Multiparametric probe	9-16 or 24 VDC or Batteries	Diameter 10 cm Length 64.77 cm Weight 1.42 Kg	Rs-485 or Rs -232 Mod-bus or Sdi-12

Multiparametric probe EXO1 includes titanium universal sensors, that detect a variety of physical, chemical, and biological properties of water.

Parameter	Full scale	Accuracy	Response	Resolution	Sensors type
			time		
Conductivity	0 to 200 mS/cm	0-100 mS/cm: ±0.5% of	T63<2 sec	0.0001 to 0.01 mS/cm	4-electrode nickel cell
		reading or 0.001 mS/cm,		range-dependent	
		100-200 mS/cm: ±1% of			
		reading			
Temperature	-5 to +50°C	-5 to 35°C: ±0.01°C	T63<1 sec	0.001°C	Thermistor
		35 to 50°C: ±0.05°C			
Depth and level	Shallow: 0 to 10 m	Shallow: ±0.04% FS ±0.004 m	T63<2 sec	0.001 m	Stainless steel strain gauge
	Medium: 0 to 100 m	Medium: ±0.04% FS ±0.04 m			
	Deep: 0 to 250 m	Deep: ±0.04% FS ±0.10 m			
	Vented: 0 to 10 m	Vented: ±0.03% FS ±0.003 m			
Ammonium	0 to 200 mg/L-N	±10% of reading or ±2 mg/L-N	T63<30 sec	0.01 mg/L	Ion-selective electrode
Nitrate	0 to 200 mg/L-N	±10% of reading or ±2 mg/L-N,	T63<30 sec	0.01 mg/L	Ion-selective electrode
Chloride	0 to 18000 mg/L-Cl	±15% of reading or ±5 mg/L-Cl,	T63<30 sec	0.01 mg/L	Ion-selective electrode
рН	0 to 14	±0.1 pH units within	T63<3 sec	0.01	Glass combination
		±10°C			alactrada
		of calibration			electrode
		temperature.			
		±0.2 pH units for			
		temp range			
ORP	-999 to +999	±20 mV in Redox	T63<5 sec	0.1 mV	Platinum button
	mV	standard			
		solution			
Turbidity	0 to 4000	0-999 FNU: 0.3 FNU	T63<2 sec	0-999 FNU: 0.01 FNU	Optical, 90° scatter
	FINU	or ±2% of reading,		1000-4000 FNU: 0.1	
		is greater: 1000-		FNU	
		4000 FNU: ±5% of			
		reading			

For Calcium detection, an electro-chemical device, Model S80 of ECD, was identified.

intel W

Figure 2. Model S80 sensor for calcium ion detection.

Calcium Ion Electrode is a combination electrode with a sensing element made of a PVC membrane containing an ion exchanger and a double junction reference electrode. The Calcium Ion Selective Electrode cartridge develops a millivolt potential proportional to the concentration of calcium ions in the measured solution. The typical output is 25mV to 30 mV per decade of change in concentration.

Parameter	Full scale	Res ti	pons ime	se	Resolution	Sens	ors type	Communication	Powe supp	er ly
Calcium	20 ppb to 40,000 ppm	T90 second	in ds	10	Depends on range Electrode Slope 26 ± 3 mV per decade of concentration change	ion sensor	exchange	4-20 mA outputs,	110/220 24 VDC	VAC,

Table 3. Calcium ion sensors specifications

For SO₄²⁻ another continuous monitoring sensor was identified (also available for Calcium or Barium).

Figure 3. Sulphate monitoring apparatus.

ScaleSense was developed to operate on the most challenging flows (e.g. high-TDS range).

Applications:

- Reverse osmosis: real-time scaling ion control to maximize recovery while protecting membranes
- Cooling tower blowdown minimization: reduce freshwater withdrawal on a scale-limited tower
- Barium, sulfate precipitation and chemical softeting process control: ensure your phys-chem process is meeting treatment goals for Ca^{2+} , Ba^{2+} , SO_4^{2-} , SiO_2
- Oil & gas: sulfate monitoring, protect disposal wells, maximise nanofiltration recovery in enhanced oil recovery (EOR)

Parameter	Full scale	Response time	Resolution	Sensors type	Communication	Power supply	Dimensions
Sulphate	ND	5 mins	2-5 %	ion specific sensor	Digital outputs not specified	120 VAC, 10A (customizable)	0.53*0.76*2.03 m Weight 113 Kg

Table 4.	SO ₄ /Calcium	ion sensors	specifications
----------	--------------------------	-------------	----------------

Moreover, another optical sensor for continuous Sulphate detection in water was identified which required further testing for the challenging flows of intelWATT applications.

Figure 4. EZ1000 Series sulphate/ EZ2000 Series Iron analyser

Parameter	Full scale	Response time	Precision	LOD	Sensor type	Communication	Power supply	Dimensions
Sulphate	10 - 40 mg/L SO4 Optional: 40 - 160 mg/L SO4 (with internal dilution) 80 - 320 mg/L SO4 (with internal dilution) 1000 - 4000 mg/L SO4 (with internal dilution)	10 mins	Better than 3% full scale range for standard test solutions	≤ 10 mg/L	Colorim etric	Analog 4 - 20 mA max. 500 Ohm load, standard 1, max. 8 (option) Optional digital output:RS232, Modbus(TCP/IP, RS485)	220 VAC,	690 mm x 465 mm x 330 mm Weight 25 Kg
Iron	Total Iron 0.01 - 1 mg/L Fe Optional: 0.002 - 0.1 mg/L 0.005 - 0.25 mg/L 0.005 - 0.5 mg/L 0.08 - 4 mg/L (with internal dilution)	20 mins	Better than 2% full scale range for standard test solutions	≤ 2 µg/L	Colorim etric	Analog 4 - 20 mA max. 500 Ohm load, standard 1, max. 8 (option) Optional digital output:RS232, Modbus(TCP/IP, RS485)	220 VAC	690 mm x 465 mm x 330 mm Weight 25 Kg

958454 — intelWATT

D8.2– Sensors datasheets and features

For online, continuous density measurement a device available from Parisa Technology is considered to be the most suitable.

Figure 5. DENSITRAK® D625 Liquid Density Meter

Table 6.	Density	sensor	specifications
----------	---------	--------	----------------

Parameter	Full scale	Accuracy	Resolution	Sensors type	Communication	Power supply
Density	0.40 – 2.00 [gr/cm3]	0.0001 gr/cm3	0.00001 gm/cm3	Spring mass	Analog output 4-20 mA Digital I/O USB, RS232, and RS485 (2- WIRE) protocols	VOLTAGE: 24 VD CURRENT: 50 to 150 mA nom

For Solar radiation a photovoltaic silicon diode is selected, which converts incoming solar radiation (W/m2), in the wavelength interval between $0.36\mu m$ and $1.1\mu m$, in to an electrical signal.

Figure 6. Silicon solar radiation sensor D8.2– Sensors datasheets and features

11/17

Parameter	Full scale	Accuracy	Resolution	Sensors type	Communication	Power supply
Solar Irradiance	0- 1600W/m²	±5%	0,1mV/(W/m²)	Silicon photodiode	Output 0 160mV; 4 20mA; 0 1V; 0 2V; 0 5V; RS485 Modbus	Voltage 9 24Vdc Consumption ≤10mA @ 12Vdc

Regarding the RED unit voltage and current motoring, two commercial devices from LEM meet the required specifications.

Figure 7. IT 205-S Current transducer and CV 3-500 Voltage transducer

 Table 8. Voltage and Current sensors specifications

Parameter	Full scale	Accuracy	Sensors type	Communication	Power supply	Dimensions
Current	Primary	0.01	Closed loop	Analog output	Voltage	76.6x77.7x47 mm
	0 -200 A Fluxgate	Fluxgate	depending on power supply voltage	5-24 V		
	Secondary					
	0-200 mA					

-	E.	23				C	
Voltage	Primary 0 -±500 V	±0.6 %	Closed Loop	Analog depending on supply voltage	output power	± 15V	77.5*64*65.5 mm Weight 560 g
	Secondary 10 V			Supply Voltage			

intel

For pressure measurement in all the 36 control points, we identified a family of devices (**3100 Series and 3200 Heavy Duty Series**) from GEMS, and WIKA (**A-10**) with appropriate full scales and resolutions.

Figure 8. 3100 Series pressure sensors

 Table 9. Pressure sensors specifications

Parameter	Full scale	Accuracy	Response time	Communication	Power supply	Dimensions
Pressure	0-4 bar and 0-200 bar	0.25% FS 0.5% FS	1 ms	Analogue Output 4-20 mA or 0-10 V (see datasheet)	Voltage 9 24Vdc Consumption ≤10mA @ 12Vdc	Max 45*26 mm Weight 35 g

Moreover, also for Flow measure, which are very different for every control point, we identify a device family (Vortex flow sensors A00X from Autosen)

Figure 9. Autosen vortex flow meters

Table 10. Flow sensors specifications

Parameter	Full scale	Accuracy	Response time	Communication	Power supply	Dimensions
Flow	0.915 l/min	Q < 50 % MEW: < 1 % MFW / Q > 50 %	0.5 s	Analogue Output	Voltage	Depends on Full scale.
	1.832 l/min	MEW: < 2 % MW;	Delay < 2 s	4-20mA	10 33 V DC	Connector
	3.550 l/min	(water) ± 0,5 °C ± 0,005 x T				type for for for for
	585 l/min	* MV = measured				G1 and G1,5
	9150 l/min	value, MREV =				
		end value				

The features of custom-made Chromium sensor developed by Politecnico di Torino, are already reported in D8.1.

Figure 10. Chromium sensor, developed by Politecnico di Torino

From Case study 3, an updated specification database was created with additional control points for key
parameters. In the table the new special sensors requirements are presented (Cr, Ni, Cu).958454 — intelWATTD8.2– Sensors datasheets and features14/17

Table 11. Updated special sensors requirements for CS3

Stream	Chromium	Precision	Nickel	Precision	Copper	Precision
Rinsing bath chromium	100-1000 ppm	10 ppm	0-15 ppm	0.5 ppm	0-5 ppm	0.1 ppm
Rinsing bath nickel	not required	not required	1000-50000 ppm	500 ppm	0-10 ppm	0.05 ppm
Rinsing bath copper	not required	not required	not required	not required	1000-10000 ppm	100 ppm
Wastewater (feed water)	100-1000 ppm	10 ppm	1000-10000 ppm	100 ppm	0-10 ppm	0.05 ppm
Water after pretreatment	100-1000 ppm	10 ppm	1000-10000 ppm	100 ppm	0-10 ppm	0.05 ppm
RO permeate	0-10 ppm	0.1 ppm	0-10 ppm	0.1 ppm	0-10 ppm	0.1 ppm
RO concentrate (brine)	1000-10000 ppm	100 ppm	1000-150000 ppm	1000 ppm	1000-80000 ppm	1000 ppm
Water after posttreatment	0-10 ppm	0.1 ppm	0-10 ppm	0.1 ppm	0-10 ppm	0.1 ppm
Concentrate after posttreatment	1000-10000 ppm	100 ppm	1000-100000 ppm	1000 ppm	1000-100000 ppm	1000 ppm
Recirculating water	not required	not required	not required	not required	not required	not required
Batch water	not required	not required	not required	not required	not required	not required

Commercial optical devices (W600 controllers from Welchem) for Nickel and Copper high concentrations detection are identified below.

Figure 11. W600 series for Nickel and Copper detection

These in-line optoelectronic analyzers are designed for use in copper or nickel baths without electrical current (and micro etching baths) that contain more than 0.10 g/l of copper or nickel ions.

Figure 12. Immersible copper sensors (A) are available for direct monitoring of solutions inside the tank or continuous flow through sensors (B) designed for monitoring outside the tank.

For Nickel only one continuous flow model variant is commercially available.

For Copper an immersion as well as continuous flow model can be used; in the latter case there are 3 different options depending on the copper concertation:

- Optical path length 0.1" Low conc. Cu (0-25 g/l)
- Optical path length 0.025" Medium conc. (15-50 g/l)
- Optical path length 0.015" High conc.

For the detection of both Nickel and Copper no reagents are required, as the measurement is colorimetric.

Parameter	Full scale	Accuracy	Resolution	Communication	Power supply	Dimensions
Copper	100-99000 ppm 100-5500 ppm	±10 ppm	±10 ppm	Analogue Output 4-20 mA Provided accuracy ± 0.5% of reading	Voltage 100 -240 VAC, 50 or 60 Hz, 7 A maximum	241x203x102 mm
Nickel	100-25000 ppm					

Table 12. Copper and Nickel sensors specifications

