

Pioneering Graphene Membrane: A Sustainable Ion Exchange Breakthrough within the IntelWATT EU Initiative

Andrea Lamberti^{1,2*}, Anna Aixalà-Perelló^{1,2}, Federico Raffone¹, Luisa Baudino¹, Alessandro Pedico^{1,2}, Mara Serrapede¹, Giancarlo Cicero¹, Sergio Bocchini^{1,2}, Candido Fabrizio Pirri^{1,2}

¹Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia (DISAT), Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy

*E-mail: andrea.lamberti@polito.it

Contact

Andrea Lamberti Associate Professor MPMNT group

FABRICATION AND OPTIMIZATION OF MEMBRANES

Self-standing GO membranes

GO reduction

Introduction

Reverse electrodialysis (RED) arises as an eco-friendly technology exploiting the Nernst potential difference between two water streams to produce electricity.

Nevertheless, the feasibility of this technology depends on the performance of the **ion-exchange membranes** (IEM), main actors of this process.

- Scalable fabrication method by Dr. Blade technique
- <u>Chemical stability</u> in acidic and basic media, solvents high saline organic and concentrations

FESEM

- High stacking of GO flakes
- Size exclusion of flakes

<u>UV irradiation</u> of membranes caused a shrinking of the channels due to GO reduction.

Composites with polymeric binders

Polymeric binders were inserted into the membrane matrix to reinforce its structure in wet state.

Motivation

2D materials show promising properties applied in ion exchange be to membranes for RED due to their great transport properties, low resistance, impressive mechanical strength, and antifouling characteristics. [1]

Graphene oxide (GO) membranes have been proposed in this study as they are naturally negatively charged thanks to their oxidized functional groups, have good mechanical strength, low cost, and facile synthesis. [2]

ELECTROCHEMICAL CHARACTERIZATION

GO membranes comparison

• Thickness

- Lateral size of flakes
- UV irradiation (reduction)

- There is a trade-off between permselectivity and electrical resistance.
- and SPEEK presence does not significantly PVP neither affect permselectivity electrical nor resistance.

Conclusions and Future Outlook

Scalable graphene oxide-based membranes have been fabricated for reverse electrodialysis

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958454.

applications.

UV irradiation has been proposed as a chemical-free reduction mechanism. Results showed a permselectivity increase by almost 10% even though electrical resistance increases.

The use of **binders** was proposed in order to strengthen the **mechanical stability** of the membranes being the composite with PVP the most performant in terms of mechanical stability, permselectivity and electrical resistance.

Further studies will involve the development of a GO-based anion exchange membrane and its study on a real RED stack system.

Bibliography

[1] Macha, M., Marion, S., Nandigana, V. V. R. & Radenovic, A. 2D materials as an emerging platform for nanopore-based power generation. Nat. Rev. Mater. 4, 588–605 (2019).

[2] Ji, J. et al. Osmotic Power Generation with Positively and Negatively Charged 2D Nanofluidic Membrane Pairs. Adv. Funct. Mater. 27, 1–8 (2017).